Molecular Modeling of Physical Aging in Epoxy Polymers
نویسندگان
چکیده
Epoxy resins are often exposed to prolonged periods of sub-Tg temperatures which cause physical aging to occur. Because physical aging can compromise the performance of epoxies and their composites and because experimental techniques cannot provide all of the necessary physical insight that is needed to fully understand physical aging, efficient computational approaches to predict the effects of physical aging on thermo-mechanical properties are needed. In the current study a new method is developed to efficiently establish molecular models of epoxy resins that represent the corresponding molecular structure at specific aging times. Although this approach does not simulate the physical aging process directly, it is useful in establishing molecular models that resemble physicallyaged states of epoxies. Such models are useful for predicting the thermomechanical properties of aged epoxy resins to facilitate the design of durable engineering structures. For demonstration purposes, the developed method is applied to an EPON 862/DETDA epoxy system for three different crosslink densities.
منابع مشابه
Physical Aging of Epoxy Polymers and Their Composites
Exposure to extended periods of sub-Tg temperatures causes physical changes in the molecular structure of epoxy resins and epoxy-based materials to occur. These physical aging mechanisms include the reduction in free volume and changes to the molecular configuration. As a result, mechanical, thermodynamic, and physical properties are affected in ways that can compromise the reliability of epoxy...
متن کاملAtomistic Modeling of Cross-linked Epoxy Polymer
Molecular Dynamics simulations are used to study cross-linking of an epoxy polymer. OPLS force field parameters are used for modeling a 2:1 stoichiometric mixture of epoxy resin and the cross-linking agent. The model has 17,928 united atoms and a static cross-linking method is used along with molecular minimization and molecular dynamics techniques to achieve two different cross-link densities....
متن کاملModifications of Internal Molecular Structures of Asphalt Components Due to Physical Aging
The internal structure of a molecule can be presented in terms of intra-molecular (i.e., inter atomic)and inter-molecular energies such as van der Waals, bond and bending, torsion, and inversion energy.In this study, changes in molecular energies of individual asphalt components are evaluated as afunction of physical aging factors. The factors for physical aging such as temperature and pressure...
متن کاملEnvironmental effects on mechanical properties of glass/epoxy and fiber metal laminates, Part II: Isothermal aging
The aim of this study is to investigate effects of isothermal aging on mechanical properties of fiber metal laminates (FMLs) and glass/epoxy composites. For this purpose, both materials were fabricated using the wet lay-up manufacturing technique under vacuum pressure. Both the glass/epoxy composites and the FML specimens were then subjected to isothermal aging (130°C, dried air) for up to 5 we...
متن کاملMolecular modeling of crosslink distribution in epoxy polymers
Experimental studies on epoxies report that the microstructure consists of highlycrosslinked localized regions connected with a dispersed phase of low-crosslink density epoxy. Because epoxies play a major role in many structural applications, the influence of the crosslink distribution on the thermo-mechanical properties must be determined. But as experiments cannot reliably report the exact nu...
متن کامل